Bridge Preservation: Evaluation, Repair and Protection

Webinar Wednesday Series
The Concrete Preservation Alliance is a growing coalition of organizations committed to advancing best practices in the field of concrete preservation and infrastructure renewal.

Working together to promote education and awareness of concrete repair industry standards, new and innovative corrosion prevention technologies and sustainable construction practices.

WeSaveStructures.info
OUR MEMBERS

vector-corrosion.com

vcservices.com

ndtcorporation.com

vector-construction.com
The construction industry is the largest user of resources and raw materials.

Approx. 40% of solid waste comes from construction and demolition.

Making new structures last longer and the rehabilitation and reuse of existing structures saves money compared to the cost of premature failure, demolition and rebuilding.

In addition to economic benefits, repairing and extending the service life of structures reduces the consumption of natural resources, pollution and construction waste.

https://www.wesavestructures.info/environmental-impact-calculator
Dr. Brian Pailes, Ph.D., P.E., NACE Specialist

Brian is the Principal Engineer with Vector Corrosion Services, a professional engineer and certified NACE Cathodic Protection Specialist (CP4).

Brian has extensive experience in the field of nondestructive evaluation (NDE), material testing, structural evaluation and corrosion assessment of reinforced concrete structures.

He earned a Ph.D. in Civil Engineering from Rutgers University, an M.S. in Civil Engineering from the University of Virginia and a B.S. in Civil Engineering from Northeastern University. Brian has also obtained a Graduate Certificate in Engineering Geophysics.
Corrosion Assessments for Concrete Bridge Elements

- Understanding the cause and effect of reinforcing steel corrosion in concrete
- Quantifying the magnitude and extent of corrosion risk.
- Many destructive and non-destructive test methods for assessing corrosion risk.
What is Corrosion Reaction

- Electrochemical Reaction
- Anode – where rust is formed
- Cathodic – no section loss

\[
Fe \rightarrow Fe^{2+} + 2e^- \\
O_2 + 2H_2O + 4e^- \rightarrow 4OH^-
\]
Concrete Protects Steel

- Concrete is naturally alkaline
 - pH of about 13
- Steel is naturally passive at this alkalinity
- Formation of passive layer
- Passive layer can be destroyed by;
 - Chlorides
 - Carbonation
Corrosion Induced Damage

- Damage resulting from
- Metal section loss and
- Formation of iron oxide (rust)
- Expansive properties of iron oxide create tensile stresses in concrete
- Leads to cracking, delamination, and eventual spalling

![Diagram showing relative sizes of iron compounds]

- \(\text{Fe(OH)}_2 \)
- \(\text{Fe}_3\text{O}_4 \)
- \(\text{Fe(OH)}_3\cdot3\text{H}_2\text{O} \)
- \(\text{FeO} \)
- \(\text{Fe} \)
Corrosion Damage

Conventional Mild Reinforcing Bar

In most cases loss of steel section not primary concern
Typically damage to concrete becomes significant and observable prior to severe section loss

High Strength Strands

Minor section loss of steel can have significant effect on strength

Steel can have significant section loss without significant concrete damage
Concrete Preservation Process

1. Identify Issues
2. Perform Evaluation
3. Determine Cause
4. Develop Repair Strategy
5. Complete Repair
6. Quality Control
ACI 562: Concrete Repair Code

• Being adopted in states throughout the US
• Requires that an evaluation take place prior to designing repairs
Delamination Survey

- Hammer sounding located areas where concrete has debonded
- Is there more going on here?
- Yellow – extent of delamination that cannot be heard through hammer sounding
- Red – extent of activate corrosion that will be a delamination in the near future
Why use NDT in Evaluation?

- We need to more accurately determine location and extent of deterioration?
- Sounding and visual inspections are known to underestimate true repair area
- Impacts of underestimating repair quantities?
- Costly change orders
- Increased project duration
- Time from inspection to construction can be long
- Deterioration will have grown from last inspection

NOT JUST FOR DECKS!
Corrosion Deterioration and NDT

- Reinforced Concrete Condition
- Time

- Chloride and Moisture Penetration
- Half-Cell Potential
- Electrical Resistivity
- Ground Penetrating Radar
- Impact Echo
- Chain Drag
- Visual Inspection
- Rebar Corrosion
- Delamination
- Spalling
Visual Inspection

Identify areas of visual deterioration

- Rust Staining
- Cracking
- Spalling
- Exposed Reinforcement
- Water Seepage
- Efflorescence
Sounding Survey

- Hammer sounding or chain drag
- Locates areas of large near surface delaminations
- Incipient delaminations cannot be identified
- False positives are rare
- False negatives are common
Collection of Cores
Chloride Sampling

- Chloride Threshold - Between 1 to 2 lbs of chloride per cubic yard of concrete
- 350 ppm of chloride in concrete is about 1.5 lbs per cubic yard
Carbonation Depth

- Carbon dioxide permeates into concrete
- Reduces pH of concrete
- CO₂ reacts with free lime, Ca(OH)₂, resulting in CaCO₃ and H₂O
- Reduced pH de-passivates steel
- Often seen when
 - Concrete permeability is high
 - Industrial sites
- Very old structures – carbonation is a result of time and exposure
Corrosion Potential Measurements

- ASTM C876
- Most people refer to it as the “half-cell” method
- Determines the probability of active corrosion of embedded metals
Corrosion Potential – Bridge Deck

Half-Cell Potential Survey 2009

[Graph showing corrosion potential distribution with color codes for 90% Probability of Active Corrosion, Corrosion Uncertain, and 90% Probability of Passive Steel.

Scale Per ASTM C876 Corrosion Potentials of Uncoated Reinforcing Steel in Concrete]
Corrosion Potential – Substructure

90% Probability of Active Corrosion

Corrosion Uncertain

90% Probability of Passive Steel

Scale Per ASTM C876 Corrosion Potentials of Uncoated Reinforcing Steel in Concrete
Ground Penetrating Radar

- Electromagnetic evaluation of concrete
- Reinforcement layout
- Location of embedded metals
- Cover Depth
- Qualitative condition of reinforced concrete
- Chlorides, moisture, and concrete deterioration attenuate GPR signal
GPR Locating Existing Reinforcement
GPR Locating Existing Reinforcement

Bituminous Overlay/Waterproof Membrane
4.9 inches to 6.2 inches thick (roadway)
3.3-3.6 inches overlay with 4-14 inches of fill (median)
Cover Depth Survey

- Cover depth is an important factor in the service life of a structure
- Reduced cover depths allow for chlorides and carbonation to reach steel faster

Chloride Diffusion

\[
C_{(x,t)} = C_o \left(1 - \text{erf} \frac{x}{2 \sqrt{D_c t}} \right)
\]

Concrete Carbonation

\[
t = \frac{1}{D_c} \left[\frac{x}{2 \times \text{inverf} \left(1 - \frac{C_{x,t}}{C_o} \right)} \right]^2
\]
GPR Cover Survey

Transverse Distance

Vertical Distance

Concrete Cover Depth (in)
GPR Amplitude Survey
Acoustic Methods – Impact Echo

- Impact
- Sensors
- Connection to Data Acquisition Unit

- Full Thickness Resonance
- No Response
- Reduced Thickness Response

- Sound Concrete
- Micro-Cracking
- Delamination
Acoustic Method – Pulse Velocity

- Impact
- Sound Concrete
- Micro-Cracking
- Delamination

Normal Compressional and Shear Wave Velocity
Lower Compressional Velocity and Lower or Loss of Shear Velocity
Normal Compressional and Shear Wave Velocity
Relationship between Compressive Strength and Wave Velocity

Curve is for the ratio: $\frac{v_{\text{shear}}}{v_{\text{compressional}}} = 0.55$

which is equal to a Poisson's ratio of 0.28
Acoustic Testing
Acoustic Testing

1) Deck delaminations impact echo measurements at sensor #1
2) Longitudinal partial deck cracking measurements at sensor #2
3) Longitudinal full deck cracking measurements at sensor #3
4) Transverse deck cracking measurements at sensor #4
Acoustic Deck Testing
Acoustic Substructure Testing
Delaminations Found by Sounding

![Graph showing delaminations found by sounding.]
Delaminations Found by Impact Echo
Acoustic In-Situ Compressive Strength

Segment 6

Joint 6

Segment 7

Length (ft)

Height (ft)
Repair Area

![Diagram showing repair area with segments and joint](image-url)
Infrared Thermography

- Delaminations have different thermal properties than sound concrete.
- Result of air-gap caused from the separation of the concrete.
- In the morning sun, delaminations heat up faster than sound concrete section.
- During evening cooling, delaminations cool down faster than sound concrete section.
- Allows for very quick assessment of large areas.
- Results are similar to chain drag and hammer sounding.
IR of Arch Bridge

- Hammer sounding survey done several years prior
- Wanted to know growth of deterioration from last survey
- IR provided a quick method to resurvey the concrete
Petrography
QUESTIONS?
Contact Dr. Pailes

Dr. Brian Pailes
Principal Engineer
Vector Corrosion Services
Tampa, FL

Office: 813-501-0050
brianp@VCServices.com
PROFESSIONAL DEVELOPMENT HOURS

- PDH certificates available
- Complete webinar evaluation
- Evaluation form link available:
 - In webinar chat
 - Via E-mail
 - QR code here
WEBINAR RECORDING & FUTURE EVENTS

Sep 9, 2020 | Corrosion Protection and Bridge Concrete Repairs
George Sargi, PhD
Vector Corrosion Technologies
Description: Electrochemical corrosion mitigation techniques were first applied to bridges in the early 1970s to mitigate or arrest corrosion of the reinforcing steel. The field has innovated and the technology has evolved since those early days. The first discrete galvanic anodes were installed in concrete repairs on the substructure of the Leicester Bridge in the UK in 1999. The performance of these anodes has been monitored for 20+ years. This webinar will discuss the development and long-term performance of discrete galvanic anodes on bridge structures in addition to the typical applications such as concrete repairs, joint repairs and bridge widenings.

Click Here to Register - 7:00 AM EDT / 1:00 PM CEST
Click Here to Register - 2:00 PM EDT

Oct 14, 2020 | Repair and Protection of Severely Corroded Bridge Substructures with Galvanic
Chris Ball
Vector Corrosion Technologies
Description: Accelerated bridge construction has gained prominence in recent years as a economical way to breathe new life into bridge structures long past their expected service life. The challenge is what to do with substructure elements that are often in as bad shape as the superstructure being replaced. An effective substructure preservation strategy is needed to ensure the expected service of the new substructure matches the expected service life of the existing substructure elements such as the abutments, beams and piers. This webinar will discuss the use of galvanic encasements as an elegant solution to service life extension for substructures and their proven track record.

Click Here to Register - 7:00 AM EDT / 1:00 PM CEST
Click Here to Register - 2:00 PM EDT